蛋白質
蛋白質(protein)是生命的物質基礎,沒有蛋白質就沒有生命。因此,它是與生命及與各種形式的生命活動緊密聯繫在一起的物質。機體中的每一個細胞和所有重要組成部分都有蛋白質參與。蛋白質占人體重量的16%~20%,即一個60kg重的成年人其體內約有蛋白質9.6~12kg。人體內蛋白質的種類很多,性質、功能各異,但都是由20多種氨基酸按不同比例組合而成的,並在體內不斷進行代謝與更新。
簡介
蛋白質四聚體(四級結構)
蛋白質是由氨基酸組成的多肽鏈經過盤曲摺疊形成的具有一定空間結構的物質。 蛋白質是由α—氨基酸按一定順序結合形成一條多肽鏈,再由一條或一條以上的多肽鏈按照其特定方式結合而成的高分子化合物。蛋白質就是構成人體組織器官的支架和主要物質,在人體生命活動中,起著重要作用,可以說沒有蛋白質就沒有生命活動的存在。每天的飲食中蛋白質主要存在於瘦肉、蛋類、豆類及魚類中。定義及概述
蛋白質是一種複雜的有機化合物,舊稱「朊(ruǎn)」。氨基酸是組成蛋白質的基本單位,氨基酸通過脫水縮合連成肽鏈。蛋白質是由一條或多條多肽鏈組成的生物大分子,每一條多肽鏈有二十至數百個氨基酸殘基(-R)不等;各種氨基酸殘基按一定的順序排列。蛋白質的氨基酸序列是由對應基因所編碼。除了遺傳密碼所編碼的20種基本氨基酸,在蛋白質中,某些氨基酸殘基還可以被翻譯后修飾而發生化學結構的變化,從而對蛋白質進行激活或調控。多個蛋白質可以一起,往往是通過結合在一起形成穩定的蛋白質複合物,摺疊或螺旋構成一定的空間結構,從而發揮某一特定功能。合成多肽的細胞器是細胞質中糙面型內質網上的核糖體。蛋白質的不同在於其氨基酸的種類,數目,排列順序和肽鏈空間結構的不同。 食入的蛋白質在體內經過消化被水解成氨基酸被吸收后,重新合成人體所需蛋白質,同時新的蛋白質又在不斷代謝與分解,時刻處於動態平衡中。因此,食物蛋白質的質和量、各種氨基酸的比例,關係到人體蛋白質合成的量,尤其是青少年的生長發育、孕產婦的優生優育、老年人的健康長壽,都與膳食中蛋白質的量有著密切的關係。蛋白質又分為完全蛋白質和不完全蛋白質。富含必需氨基酸,品質優良的蛋白質統稱完全蛋白質,如奶、蛋、魚、肉類等屬於完全蛋白質,植物中的大豆亦含有完全蛋白質。缺乏必需氨基酸或者含量很少的蛋白質稱不完全蛋白質,如谷、麥類、玉米所含的蛋白質和動物皮骨中的明膠等。組成及特點
蛋白質是由C(碳)、H(氫)、O(氧)、N(氮)組成,一般蛋白質可能還會含有P(磷)、S(硫)、Fe(鐵)、Zn(鋅)、Cu(銅)、B(硼)、Mn(錳)、I(碘)、Mo(鉬)等。 這些元素在蛋白質中的組成百分比約為:碳50% 氫7% 氧23% 氮16% 硫0~3% 其他微量 (1)一切蛋白質都含N元素,且各種蛋白質的含氮量很接近,平均為16%; (2)蛋白質係數:任何生物樣品中每1g元N的存在,就表示大約有100/16=6.25g蛋白質的存在, 6.25常稱為蛋白質常數蛋白質整體的結構
蛋白質是以氨基酸為基本單位構成的生物高分子。蛋白質分子上氨基酸的序列和由此形成的立體結構構成了蛋白質結構的多樣性。蛋白質具有一級、二級、三級、四級結構,蛋白質分子的結構決定了它的功能。 一級結構:蛋白質多肽鏈中氨基酸的排列順序,以及二硫鍵的位置。 二級結構:蛋白質分子局區域內,多肽鏈沿一定方向盤繞和摺疊的方式。 三級結構:蛋白質的二級結構基礎上借助各種次級鍵捲曲摺疊成特定的球狀分子結構的空間構象。 四級結構:多亞基蛋白質分子中各個具有三級結構的多肽鏈,以適當的方式聚合所形成的蛋白質的三維結構。 連接方法:用約20種氨基酸作原料,在細胞質中的核糖體上,將氨基酸分子互相連接成肽鏈。一個氨基酸分子的氨基,脫去一分子水而連接起來,這種結合方式叫做脫水縮合。通過縮合反應,在羧基和氨基之間形成的連接兩個氨基酸分子的那個鍵叫做肽鍵。由肽鍵連接形成的化合物稱為肽。代謝吸收
蛋白質在胃液消化酶的作用下,初步水解,在小腸中完成整個消化吸收過程。氨基酸的吸收通過小腸黏膜細胞,是由主動運轉系統進行,分別轉運中性、酸性和鹼性氨基酸。在腸內被消化吸收的蛋白質,不僅來自於食物,也有腸黏膜細胞脫落和消化液的分泌等,每天有70g左右蛋白質XX消化系統,其中大部分被消化和重吸收。未被吸收的蛋白質由糞便排出體外。生理需要
2000年,中國營養學會重新修訂了推薦的膳食營養素攝入量,新修訂的蛋白質推薦攝入量如下: 中國居民膳食蛋白質的推薦攝入量年齡(歲) | 蛋白質RNI/(g/d) | 年齡(歲) | 蛋白質RNI/(g/d) | ||
男 | 女 | 男 | 女 | ||
0~ | 1.5~3g/(kg·d) | 14~ | 65 | 60 | |
0.5~ | 1.5~3g/(kg·d) | 18~ | | | |
1~ | 35 | 35 | 體力活動 | | |
2~ | 40 | 40 | 輕 | 55 | 45 |
3~ | 45 | 45 | 中 | 60 | 50 |
4~ | 50 | 50 | 重 | 70 | 60 |
5~ | 55 | 55 | 孕婦
| | |
6~ | 55 | 55 | 早期 | | +8 |
7~ | 60 | 60 | 中期 | | +18 |
8~ | 65 | 65 | 晚期 | | +23 |
9~ | 65 | 65 | 乳母 | | +23 |
10~ | 70 | 65 | 老年 | 75 | 69 |
11~ | 75 | 75 | 按1.27/(kg·d)或按15%蛋白質/總熱量計 |
病癥
過量表現
蛋白質,尤其是動物性蛋白攝入過多,對人體同樣有害。首先過多的動物蛋白質的攝入,就必然攝入較多的動物脂肪和膽固醇。其次蛋白質過多本身也會產生有害影響。正常情況下,人體不儲存蛋白質,所以必須將過多的蛋白質脫氨分解,氮則由尿排出體外,這加重了代謝負擔,而且,這一過程需要大量水分,從而加重了腎臟的負荷,若腎功能本來不好,則危害就更大。過多的動物蛋白攝入,也造成含硫氨基酸攝入過多,這樣可加速骨骼中鈣質的丟失,易產生骨質疏鬆。缺乏症
蛋白質缺乏在成人和兒童中都有發生,但處於生長階段的兒童更為敏感。蛋白質的缺乏常見癥狀是代謝率下降,對疾病抵抗力減退,易患病,遠期效果是器官的損害,常見的是兒童的生長發育遲緩、體質量下降、淡漠、易激怒、貧血以及乾瘦病或水腫,並因為易感染而繼發疾病。蛋白質的缺乏,往往又與能量的缺乏共同存在即蛋白質—熱能營養不良,分為兩種,一種指熱能攝入基本滿足而蛋白質嚴重不足的營養性疾病,稱加西卡病。另一種即為「消瘦」,指蛋白質和熱能攝入均嚴重不足的營養性疾病。性質
①具有兩性 蛋白質是由α-氨基酸通過肽鍵構成的高分子化合物,在蛋白質分子中存在著氨基和羧基,因此跟氨基酸相似,蛋白質也是兩性物質。 ②可發生水解反應 蛋白質在酸、鹼或酶的作用下發生水解反應,經過多肽,最後得到多種α-氨基酸。 蛋白質水解時,應找准結構中鍵的「斷裂點」,水解時肽鍵部分或全部斷裂。 ③溶水具有膠體的性質 有些蛋白質能夠溶解在水裡(例如雞蛋白能溶解在水裡)形成溶液。 蛋白質的分子直徑達到了膠體微粒的大小(10-9~10-7m)時,所以蛋白質具有膠體的性質。 ④蛋白質沉澱 原因:加入高濃度的中性鹽、加入有機溶劑、加入重金屬、加入生物鹼或酸類、熱變性 少量的鹽(如硫酸銨、硫酸鈉等)能促進蛋白質的溶解。如果向蛋白質水溶液中加入濃的無機鹽溶液,可使蛋白質的溶解度降低,而從溶液中析出,這種作用叫做鹽析. 這樣鹽析出的蛋白質仍舊可以溶解在水中,而不影響原來蛋白質的性質,因此鹽析是個可逆過程.利用這個性質,採用分段鹽析方法可以分離提純蛋白質. ⑤蛋白質的變性 在熱、酸、鹼、重金屬鹽、紫外線等作作用下,蛋白質會發生性質上的改變而凝結起來.這種凝結是不可逆的,不能再使它們恢復成原來的蛋白質.蛋白質的這種變化叫做變性. 蛋白質變性后,就失去了原有的可溶性,也就失去了它們生理上的作用.因此蛋白質的變性凝固是個不可逆過程. 造成蛋白質變性的原因 物理因素包括:加熱、加壓、攪拌、振蕩、紫外線照XX、XXX線、超聲波等: 化學因素包括:強酸、強鹼、重金屬鹽、三氯乙酸、乙醇、丙酮等。 ⑥顏色反應 蛋白質可以跟許多試劑發生顏色反應.例如在雞蛋白溶液中滴入濃硝酸,則雞蛋白溶液呈黃色.這是由於蛋白質(含苯環結構)與濃硝酸發生了顏色反應的緣故.還可以用雙縮脲試劑對其進行檢驗,該試劑遇蛋白質變紫 ⑦蛋白質在灼燒分解時,可以產生一種燒焦羽毛的特殊氣味. 利用這一性質可以鑒別蛋白質.摺疊過程
對蛋白質摺疊機理的研究,對保留蛋白質活性,維持蛋白質穩定性和包涵體蛋白質摺疊復性都具有重要的意義(21)。早在上世紀30年代,我國生化界先驅吳憲教授就對蛋白質的變性作用進行了闡釋(8),30年後,Anfinsen通過對核糖核酸酶A的經典研究表明去摺疊的蛋白質在體外可以自發的進行再摺疊,僅僅是序列本身已經包括了蛋白質正確摺疊的所有信息(9,10),並提出蛋白質摺疊的熱力學假說,為此Anfinsen獲得1972年諾貝爾化學獎。這一理論有兩個關鍵點:1蛋白質的狀態處於去摺疊和天然構象的平衡中;2 天然構象的蛋白質處於熱力學最低的能量狀態。儘管蛋白質的氨基酸序列在蛋白質的正確摺疊中起著核心的作用,各種各樣的因素,包括信號序列,輔助因子,分子伴侶,環境條件,均會影響蛋白質的摺疊,新生蛋白質摺疊並組裝成有功能的蛋白質,並非都是自發的,在多數情況下是需要其它蛋白質的幫助,已經鑒定了許多參與蛋白質摺疊的摺疊酶和分子伴侶(3,16,86),蛋白質「自發摺疊」的經典概念發生了轉變和更新,但這並不與摺疊的熱力學假說相矛盾,而是在動力學上完善了熱力學觀點。在蛋白質的摺疊過程中,有許多作用力參與,包括一些構象的空間阻礙,范德華力,氫鍵的相互作用,疏水效應,離子相互作用,多肽和周圍溶劑相互作用產生的熵驅動的摺疊(12,52),但對於蛋白質獲得天然結構這一複雜過程的特異性,我們還知之甚少,許多實驗和理論的工作都在加深我們對摺疊的認識,但是問題仍然沒有解決。 在摺疊的機制研究上早期的理論認為,摺疊是從變性狀態通過中間狀態到天然狀態的一個逐步的過程,並對摺疊中間體進行了深入研究,認為摺疊是在熱力學驅動下按單一的途徑進行的。後來的研究表明摺疊過程存在實驗可測的多種中間體,摺疊通過有限的路徑進行。新的理論強調在摺疊的初始階段存在多樣性,蛋白質通過許多的途徑XX摺疊漏斗(folding funnel),從而摺疊在整體上被描述成一個漏斗樣的圖像,摺疊的動力學過程被認為是部分摺疊的蛋白質整體上的進行性裝配,並且伴隨有自由能和熵的變化,蛋白質最終尋找到自己的正確的摺疊結構,這一理論稱為能量圖景(energy landscape),如圖3所示,漏斗下方的凹凸反映蛋白質構象瞬間XX局部自由能最小區域(13,14)。 圖3:能量圖景(The energy landscape)的示意圖,高度代表能量尺度,寬度代表構象尺度,在漏斗(funnel)的下方存在別的低能量狀態,共存的不同能量狀態的蛋白質種類也降到最小(14)。 這一理論認為結構同源的蛋白質可以通過不同的摺疊途徑形成相似的天然構象,人酸性成纖維生長因子(hFGF-1)和蠑螈酸性成纖維生長因子(nFGF-1)氨基酸序列具有約80%同源性,並且具有結構同源性(12個β摺疊反向平行排列形成β摺疊桶),在鹽酸胍誘導去摺疊的過程中,hFGF-1可以監測到具有熔球體樣的摺疊中間體,而nFGF-1經由兩態(天然狀態到變性狀態)去摺疊,沒有檢測到中間體的存在,摺疊的動力學研究也表明兩種蛋白採用不同的摺疊機制(38)。對於同一蛋白質,採用的滲透壓調節劑(osmolytes)不同,蛋白質摺疊的途徑也不相同,說明不同的滲透壓調節劑對蛋白質的穩定效應不同(11)。這兩個例子都說明摺疊機制的複雜性,也與上面所介紹的理論相吻合。生理功能
1.構造人的身體:蛋白質是一切生命的物質基礎,是機體細胞的重要組成部分,是人體組織更新和修補的主要原料。人體的每個組織:毛髮、皮膚、肌肉、骨骼、內臟、大腦、血液、神經、內分泌等都是由蛋白質組成,所以說飲食造就人本身。蛋白質對人的生長發育非常重要。 比如大腦發育的特點是一次性完成細胞增殖,人的大腦細胞的增長有二個高峰期。第一個是胎兒三個月的時候;第二個是出生後到一歲,特別是0---6個月的嬰兒是大腦細胞猛烈增長的時期。到一歲大腦細胞增殖基本完成,其數量已達成人的9/10。所以0到1歲兒童對蛋白質的攝入要求很有特色,對兒童的智力發展尤關重要。 2.結構物質:人的身體由百兆億個細胞組成,細胞可以說是生命的最小單位,它們處於永不停息的衰老、死亡、新生的新陳代謝過程中。例如年輕人的表皮28天更新一次,而胃黏膜兩三天就要全部更新。所以一個人如果蛋白質的攝入、吸收、利用都很好,那麼皮膚就是光澤而又有彈性的。反之,人則經常處於亞健康狀態。組織受損后,包括外傷,不能得到及時和高質量的修補,便會加速肌體衰退。 3.載體的運輸:維持肌體正常的新陳代謝和各類物質在體內的輸送。載體蛋白對維持人體的正常生命活動是至關重要的。可以在體內運載各種物質。比如血紅蛋白—輸送氧(紅血球更新速率250萬/秒)、脂蛋白——輸送脂肪、細胞膜上的受體還有轉運蛋白等。 4.白蛋白:維持機體內的滲透壓的平衡及體液平衡。 5.維持體液的酸鹼平衡。 6.抗體的免疫:有白細胞、淋巴細胞、巨噬細胞、抗體(免疫球蛋白)、補體、干擾素等。七天更新一次。當蛋白質充足時,這個部隊就很強,在需要時,數小時內可以增加100倍。 7.酶的催化:構成人體必需的催化和調節功能的各種酶。我們身體有數千種酶,每一種只能參與一種生化反應。人體細胞里每分鐘要進行一百多次生化反應。酶有促進食物的消化、吸收、利用的作用。相應的酶充足,反應就會順利、快捷的進行,我們就會精力充沛,不易生病。否則,反應就變慢或者被阻斷。 8.激素的調節:具有調節體內各器官的生理活性。胰島素是由51個氨基酸分子合成。生長素是由191個氨基酸分子合成。 9.構成神經遞質乙酰膽鹼、五羥色氨等。維持神經系統的正常功能:味覺、視覺和記憶。 10.膠原蛋白:占身體蛋白質的1/3,生成結締組織,構成身體骨架。如骨骼、血管、韌帶等,決定了皮膚的彈性,保護大腦(在大腦腦細胞中,很大一部分是膠原細胞,並且形成血腦屏障保護大腦) 11.能源物質:提供生命活動的能量。蛋白質和健康
蛋白質是荷蘭科學家格利特·馬爾德在1838年發現的。他觀察到有生命的東西離開了蛋白質就不能生存。蛋白質是生物體內一種極重要的高分子有機物,占人體干重的54%。蛋白質主要由氨基酸組成,因氨基酸的組合排列不同而組成各種類型的蛋白質。人體中估計有10萬種以上的蛋白質。生命是物質運動的高級形式,這種運動方式是通過蛋白質來實現的,所以蛋白質有極其重要的生物學意義。人體的生長、發育、運動、遺傳、繁殖等一切生命活動都離不開蛋白質。生命運動需要蛋白質,也離不開蛋白質。球狀蛋白質(三級結構)
人體內的一些生理活性物質如胺類、神經遞質、多肽類激素、抗體、酶、核蛋白以及細胞膜上、血液中起「載體」作用的蛋白都離不開蛋白質,它對調節生理功能,維持新陳代謝起著極其重要的作用。人體運動系統中肌肉的成分以及肌肉在收縮、作功、完成動作過程中的代謝無不與蛋白質有關,離開了蛋白質,體育鍛煉就無從談起。 在生物學中,蛋白質被解釋為是由氨基酸借肽鍵聯接起來形成的多肽,然後由多肽連接起來形成的物質。通俗易懂些說,它就是構成人體組織器官的支架和主要物質,在人體生命活動中,起著重要作用,可以說沒有蛋白質就沒有生命活動的存在。每天的飲食中蛋白質主要存在於瘦肉、蛋類、豆類及魚類中。蛋白質翻譯後轉運
蛋白質缺乏:成年人:肌肉消瘦、肌體免疫力下降、貧血,嚴重者將產生水腫。未成年人:生長發育停滯、貧血、智力發育差,視覺差。蛋白質過量:蛋白質在體內不能貯存,多了肌體無法吸收,過量攝入蛋白質,將會因代謝障礙產生蛋白質中毒甚至於死亡。組成
必需氨基酸
纖維狀蛋白質(二級結構)
食物中的蛋白質必須經過腸胃道消化,分解成氨基酸才能被人體吸收利用,人體對蛋白質的需要實際就是對氨基酸的需要。吸收后的氨基酸只有在數量和種類上都能滿足人體需要身體才能利用它們合成自身的蛋白質。營養學上將氨基酸分為必需氨基酸和非必需氨基酸兩類。 必需氨基酸指的是人體自身不能合成或合成速度不能滿足人體需要,必須從食物中攝取的氨基酸。對成人來說,這類氨基酸有8種,包括賴氨酸、蛋氨酸、亮氨酸、異亮氨酸、蘇氨酸、纈氨酸、色氨酸、苯丙氨酸。對嬰兒來說,有9種,,多一種組氨酸。非必需氨基酸
非必需氨基酸並不是說人體不需要這些氨基酸,而是說人體可以自身合成或由其它氨基酸轉化而得到,不一定非從食物直接攝取不可。這類氨基酸包括谷氨酸、丙氨酸、甘氨酸、天門冬氨酸、胱氨酸、脯氨酸、絲氨酸和酪氨酸等,12種。。有些非必需氨基酸如胱氨酸和酪氨酸如果供給充裕還可以節省必需氨基酸中蛋氨酸和苯丙氨酸的需要量。作用
蛋白質在細胞和生物體的生命活動過程中,起著十分重要的作用。生物的結構和性狀都與蛋白質有關。蛋白質還參與基因表達的調節,以及細胞中氧化還原、電子傳遞、神經傳遞乃至學習和記憶等多種生命活動過程。在細胞和生物體內各種生物化學反應中起催化作用的酶主要也是蛋白質。許多重要的激素,如胰島素和胸腺激素等也都是蛋白質。此外,多種蛋白質,如植物種子(豆、花生、小麥等)中的蛋白質和動物蛋白、乳酪等都是供生物營養生長之用的蛋白質。有些蛋白質如蛇毒、蜂毒等是動物攻防的武器。 蛋白質占人體的20 %,占身體比例最大的。膽汁,尿液除外,都是蛋白質合成的。只有蛋白質充足,才能代謝正常。就像蓋房子,構建身體的原材料最主要的是蛋白質。 1.蛋白質是構建新組織的基礎材料,是酶,激素合成的原料,;維持鉀鈉平衡;消除水腫。 2.是合成抗體的成分:白細胞,T淋巴細胞,干擾素等,提高免疫力。 3.提供一部分能量。 4.調低血壓,緩衝貧血,是紅細胞的載體。 5.形成人體的膠原蛋白。眼球玻璃體,視紫質都有膠原蛋白。 6.調解酸鹼度。經常吃肉的人呈酸性體質。會出現頭沉---供血不足,吃充足的蛋白質,不讓糖分降低。 7.大腦細胞分裂的動力源是蛋白質;腦脊液是蛋白質合成的;記憶力下降 8.XX障礙 9.肝臟:造血功能;合成激素,酶;解毒。缺乏蛋白質,肝細胞不健康。有一副好肝臟,人健康就有保障。 10.心臟---泵器官。缺乏蛋白質會出現手腳冰涼;缺氧;心肌缺氧造成心力衰竭----死亡。 11.脾胃:每天都要消化食物,消化酶是蛋白質合成的。缺乏會造成胃動力不夠,消化不良,打嗝。胃潰瘍,胃炎;胃酸過多,刺激潰瘍面你會感覺到疼,蛋白質唯一具有修復再造細胞的功能。消化壁上有韌帶,缺乏蛋白質會鬆弛,內臟下垂,XX下垂臟器移位。 12.四肢:人老先老腿,缺乏蛋白質肌肉萎縮;骨頭的韌性減低,易骨折 13.抗體會減少,易感冒,發燒。常見蛋白質
分類
營養學上根據食物蛋白質所含氨基酸的種類和數量將食物蛋白質分三類:1、完全蛋白質這是一類優質蛋白質。它們所含的必需氨基酸種類齊全,數量充足,彼此比例適當。這一類蛋白質不但可以維持人體健康,還可以促進生長發育。2、半完全蛋白質這類蛋白質所含氨基酸雖然種類齊全,但其中某些氨基酸的數量不能滿足人體的需要。它們可以維持生命,但不能促進生長發育。3、不完全蛋白質這類蛋白質不能提供人體所需的全部必需氨基酸,單純靠它們既不能促進生長發育,也不能維持生命。 根據蛋白質分子的外形,可以將其分作3類 1.球狀蛋白質分子形狀接近球形,水溶性較好,種類很多,可行使多種多樣的生物學功能。 2.纖維狀蛋白質分子外形呈棒狀或纖維狀,大多數不溶於水,是生物體重要的結構成分,或對生物體起保護作用。 3.膜蛋白質一般摺疊成近球形,XX生物膜,也有一些通過非共價鍵或共價鍵結合在生物膜的表面。生物膜的多數功能是通過膜蛋白實現的。種類
纖維蛋白(fibrous protein):一類主要的不溶於水的蛋白質,通常都含有呈現相同二級結構的多肽鏈許多纖維蛋白結合緊密,併為單個細胞或整個生物體提供機械強度,起著保護或結構上的作用。 球蛋白(globular protein):緊湊的,近似球形的,含有摺疊緊密的多肽鏈的一類蛋白質,許多都溶於水。典形的球蛋白含有能特異的識別其它化合物的凹陷或裂隙部位。 角蛋白(keratin):由處於α-螺旋或β-摺疊構象的平行的多肽鏈組成不溶於水的起著保護或結構作用蛋白質。 膠原(蛋白)(collagen):是動物結締組織最豐富的一種蛋白質,它是由原膠原蛋白分子組成。原膠原蛋白是一種具有右手超螺旋結構的蛋白。每個原膠原分子都是由3條特殊的左手螺旋(螺距0.95nm,每一圈含有3.3個殘基)的多肽鏈右手旋轉形成的。 伴娘蛋白(chaperone):與一種新合成的多肽鏈形成複合物並協助它正確摺疊成具有生物功能構向的蛋白質。伴娘蛋白可以防止不正確摺疊中間體的形成和沒有組裝的蛋白亞基的不正確聚集,協助多肽鏈跨膜轉運以及大的多亞基蛋白質的組裝和解體。 肌紅蛋白(myoglobin):是由一條肽鏈和一個血紅素輔基組成的結合蛋白,是肌肉內儲存氧的蛋白質,它的氧飽和曲線為雙曲線型。 血紅蛋白(hemoglobin):是由含有血紅素輔基的4個亞基組成的結合蛋白。血紅蛋白負責將氧由肺運輸到外周組織,它的氧飽和曲線為S型。 蛋白質變性(denaturation):生物大分子的天然構象遭到破壞導致其生物活性喪失的現象。蛋白質在受到光照,熱,有機溶劑以及一些變性劑的作用時,次級鍵受到破壞,導致天然構象的破壞,使蛋白質的生物活性喪失。 復性(renaturation):在一定的條件下,變性的生物大分子恢復成具有生物活性的天然構象的現象。 別構效應(allosteric effect):又稱為變構效應,是寡聚蛋白與配基結合改變蛋白質的構象,導致蛋白質生物活性改變的現象。 幫助癌細胞的蛋白質的結構 當癌細胞快速增生時,它們好像需要一種名為survivin的蛋白質的幫助。這種蛋白質在癌細胞中含量很豐富,但在正常細胞中卻幾乎不存在。癌細胞與survivin蛋白的這種依賴性使得survivin自然成為製造新抗癌藥物的靶標,但是在怎樣對付survivin蛋白這個問題上卻仍有一些未解之謎。最近據一些研究人員報道,survivin蛋白出人意料地以成雙配對的形式結合在一起——這一發現很有可能為抗癌藥物的設計提供了新的鍥機。 Survivin蛋白屬於一類防止細胞自我破壞(即凋亡)的蛋白質。這類蛋白質主要通過抑制凋亡酶(caspases)的作用來阻礙其把細胞送上自殺的道路。以前一直沒有科學家觀察到survivin蛋白與凋亡酶之間的相互作用。也有其它跡象表明survivin蛋白扮演著另一個不同的角色——在細胞分裂后幫助把細胞拉開。 為了搞清survivin蛋白到底起什麼作用,美國加利福尼亞州的結構生物學家Joseph Noel和同事們率先認真觀察了它的三維結構。他們將XXX線照XX在該蛋白質的晶體上,並測量了XXX線的偏轉角度,這可以讓研究人員計算出蛋白質中每個原子所處的位置。他們得到的結果指出,survivin蛋白形成一種結和,這是其它凋亡抑制物不形成的。這幾位研究人員在7月份出版的《自然結構生物學》雜誌中報告,survivin分子的一部分出人意料地與另一個survivin分子的相應部分連結在一起,形成了一個被稱為二聚物(dimer)的蛋白質對。研究人員推測這些survivin蛋白的二聚物可能在細胞分裂時維持關鍵的分子結構。如果這種蛋白質必須成雙配對后才能發揮作用,那麼用一種小分子把它們分開也許能對付癌症。 生物化學家Guy Salvesen說,掌握了survivin蛋白的結構「並沒有澄清它是怎樣防止細胞自殺的疑點」。但是他說,這些蛋白質配對的事實確實讓人驚奇,「你幾乎很難找到不重要的二聚作用區域」。他也同意兩個蛋白質的接觸面將是抗癌症藥物集中對付的良好靶標。來源
蛋白質的主要來源是肉、蛋、奶、和豆類食品,一般而言,來自於動物的蛋白質有較高的品質,含有充足的必需氨基酸。必需氨基酸約有8種,無法由人體自行合成,必須由食物中攝取,若是體內有一種必需氨基酸存量不足,就無法合成充分的蛋白質供給身體各組織使用,其他過剩的蛋白質也會被身體代謝而浪費掉,所以確保足夠的必需氨基酸攝取是很重要的。植物性蛋白質通常會有1-2種必需氨基酸含量不足,所以素食者需要攝取多樣化的食物,從各種組合中獲得足夠的必需氨基酸。一塊像撲克牌大小的煮熟的肉約含有30-35公克的蛋白質,一大杯牛奶約有8-10公克,半杯的各式豆類約含有6-8公克。所以一天吃一塊像撲克牌大小的肉,喝兩大杯牛奶,一些豆子,加上少量來自於蔬菜水果和飯,就可得到大約60-70公克的蛋白質,足夠一個體重60公斤的長跑選手所需。若是你的需求量比較大,可以多喝一杯牛奶,或是酌量多吃些肉類,就可獲得充分的蛋白質。怎樣選擇蛋白質食物
蛋白質食物是人體重要的營養物質,保證優質蛋白質的補給是關係到身體健康的重要問題,怎樣選用蛋白質才既經濟又能保證營養呢? 首先,要保證有足夠數量和質量的蛋白質食物.根據營養學家研究,一個成年人每天通過新陳代謝大約要更新300g以上蛋白質,其中3/4來源於機體代謝中產生的氨基酸,這些氨基酸的再利用大大減少了需補給蛋白質的數量.一般地講,一個成年人每天攝入60g~80g蛋白質,基本上已能滿足需要. 其次,各種食物合理搭配是一種既經濟實惠,又能有效提高蛋白質營養價值的有效方法.每天食用的蛋白質最好有三分之一來自動物蛋白質,三分之二來源於植物蛋白質.我國人民有食用混合食品的習慣,把幾種營養價值較低的蛋白質混合食用,其中的氨基酸相互補充,可以顯著提高營養價值.例如,穀類蛋白質含賴氨酸較少,而含蛋氨酸較多.豆類蛋白質含賴氨酸較多,而含蛋氨酸較少.這兩類蛋白質混合食用時,必需氨基酸相互補充,接近人體需要,營養價值大為提高. 第三,每餐食物都要有一定質和量的蛋白質.人體沒有為蛋白質設立儲存倉庫,如果一次食用過量的蛋白質,勢必造成浪費.相反如食物中蛋白質不足時,青少年發育不良,成年人會感到乏力,體重下降,抗病力減弱. 第四,食用蛋白質要以足夠的熱量供應為前提.如果熱量供應不足,肌體將消耗食物中的蛋白質來作能源。每克蛋白質在體內氧化時提供的熱量是18kJ,與葡萄糖相當。用蛋白質作能源是一種浪費,是大材小用。食用量
攝入的蛋白質有可能會過量,保持健康所需的蛋白質含量因人而異。 普通健康成年男性或女性每公斤(2.2 磅)體重大約需要0.8 克蛋白質。 隨著年齡的增長,合成新蛋白質的效率會降低,肌肉塊(蛋白質組織)也會萎縮,而脂肪含量卻保持不變甚至有所增加。這就是為什麼在老年時期肌肉看似會「變成肥肉」。嬰幼兒、青少年、懷孕期間的婦女、傷員和運動員通常每日可能需要攝入更多蛋白質。食物中的蛋白質
含蛋白質多的食物包括:蛋白質
牲畜的奶,如牛奶、羊奶、馬奶等;畜肉,如牛、羊、豬肉等;禽肉,如雞、鴨、鵝、鵪鶉、鴕鳥等;蛋類,如雞蛋、鴨蛋、鵪鶉蛋等及魚、蝦、蟹等;還有大豆類,包括黃豆、大青豆和黑豆等,其中以黃豆的營養價值最高,它是嬰幼兒食品中優質的蛋白質來源;此外像芝麻、瓜子、核桃、杏仁、松子等乾果類的蛋白質的含量均較高。由於各種食物中氨基酸的含量、所含氨基酸的種類各異,且其他營養素(脂肪、糖、礦物質、維生素等)含量也不相同,因此,給嬰兒添加輔食時,以上食品都是可供選擇的,還可以根據當地的特產,因地制宜地為小兒提供蛋白質高的食物。 蛋白質食品價格均較昂貴,家長可以利用幾種廉價的食物混合在一起,提高蛋白質在身體里的利用率,例如,單純食用玉米的生物價值為60%、小麥為67%、黃豆為64%,若把這三種食物,按比例混合后食用,則蛋白質的利用率可達77%。蛋白質
生物體內普遍存在的一種主要由氨基酸組成的生物大分子。它與核酸 同為生物體最基本的物質,擔負著生命活動過程的各種極其重要的功能。蛋白質的基本結構單元是氨基酸,在蛋白質中出現的氨基酸共有20種。氨基酸以肽鍵相互連接,形成肽鏈。 簡史1820年H.布拉孔諾發現甘氨酸和亮氨酸,這是最初被鑒定為蛋白質成分的氨基酸,以後又陸續發現了其他的氨基酸。到19世紀末已經搞清蛋白質主要是由一類相當簡單的有機分子——氨基酸所組成。1902年E.菲舍爾和F.霍夫邁斯特各自獨立地闡明了在蛋白質分子中將氨基酸連接在一起的化學鍵是肽鍵;1907年E.菲舍爾又成功地用化學方法連接了18個氨基酸首次合成了多肽,從而建立了作為蛋白質化學結構基礎的多肽理論。對蛋白質精確的三維結構知識主要來自對蛋白質晶體的XXX線衍XX分析,1960 年J.C.肯德魯首次應用XXX線衍XX分析技術測定了肌紅蛋白的晶體結構,這是第一個被闡明了三維結構的蛋白質。中國科學工作者在1965年用化學合成法全合成了。